.jpg?w=1)
Details
BERNOULLI, Jacob (1654-1705). Ars conjectandi, opus posthumum. Accedit tractatus de seriebus infinitis, et epistola Gallicè scripta de ludo pilae reticularis. Ed. Nicolaus Bernoulli. Bâle: Thurneisser frères, 1713.
In-4 (228 x 170 mm). Marque d'imprimeur sur la page de titre. 2 grandes tables dépliantes, une planche dépliante avec des figures géométriques. (Petite tache brune en marge inférieure, 4 derniers feuillets avec petite galerie de vers touchant quelques lettres.) Broché, reliure d'attente de l'époque en cartonnage gris, (petite galerie de vers sur le plat inférieur). Provenance: Jean-Antoine Gautier (note sur la page de titre) -- Harrison D. Horblit (ex-libris).
ÉDITION ORIGINALE DU TRAITé CAPITAL SUR LE CALCUL DES PROBABILITéS. "[Ars conjectandi] was the first systematic attempt to place the theory of probability on a firm basis and is still the foundation of much modern practice in all fields where probability is concerned -- insurance, statistics and mathematical heredity tables" (PMM). La dernière partie, intitulée Lettre à un amy sur les parties du jeu de paume, est entièrement rédigée en français, "pour ne pas rebuter dans sa lecture par la traduction des termes qui sont en usage parmy les jouëurs, & qui deviendroient peu intelligibles, si on les mettoit en une autre langue".
Exemplaire ayant appartenu à Jean-Antoine Gautier (1674-1729), professeur de philosophie et recteur de l'Académie de Genève, conseiller et secrétaire d'Etat en 1723. Il a inséré entre les pages 30 et 31 un feuillet contenant des calculs de sa main. SUPERBE EXEMPLAIRE à TOUTES MARGES, NON ROGNé, TEL QUE PARU. Dibner 110; Norman 216; PMM 179 ("Jacob was among the first to develop the calculus beyond the point at which it was left by Newton and Leibniz...")
In-4 (228 x 170 mm). Marque d'imprimeur sur la page de titre. 2 grandes tables dépliantes, une planche dépliante avec des figures géométriques. (Petite tache brune en marge inférieure, 4 derniers feuillets avec petite galerie de vers touchant quelques lettres.) Broché, reliure d'attente de l'époque en cartonnage gris, (petite galerie de vers sur le plat inférieur). Provenance: Jean-Antoine Gautier (note sur la page de titre) -- Harrison D. Horblit (ex-libris).
ÉDITION ORIGINALE DU TRAITé CAPITAL SUR LE CALCUL DES PROBABILITéS. "[Ars conjectandi] was the first systematic attempt to place the theory of probability on a firm basis and is still the foundation of much modern practice in all fields where probability is concerned -- insurance, statistics and mathematical heredity tables" (PMM). La dernière partie, intitulée Lettre à un amy sur les parties du jeu de paume, est entièrement rédigée en français, "pour ne pas rebuter dans sa lecture par la traduction des termes qui sont en usage parmy les jouëurs, & qui deviendroient peu intelligibles, si on les mettoit en une autre langue".
Exemplaire ayant appartenu à Jean-Antoine Gautier (1674-1729), professeur de philosophie et recteur de l'Académie de Genève, conseiller et secrétaire d'Etat en 1723. Il a inséré entre les pages 30 et 31 un feuillet contenant des calculs de sa main. SUPERBE EXEMPLAIRE à TOUTES MARGES, NON ROGNé, TEL QUE PARU. Dibner 110; Norman 216; PMM 179 ("Jacob was among the first to develop the calculus beyond the point at which it was left by Newton and Leibniz...")
Further details
First edition, posthumously published, of Bernoulli's fundamental treatise on the principles of the calculus of probabilities. The first part is a perceptive commentary on Huygens's De ratiociniis in aleae ludo, the second part deals with the theory of combinations, the third part gives concrete examples on the expectation of profit in games, the fourth part contains philosophical thoughts on probability. The final section, written in French, explains the various strategies in real tennis, jeu de paume, and the probabilities of winning in different situations. Bernoulli discusses players of uneven strength, games of two versus one, and other permutations of the game. Association copy, from the library of Jean-Antoine Gautier, philosophy professor and rector of the Academy of Geneva (1717-1721).