.jpg?w=1)
Details
GAUSS, Carl Friedrich (1777-1855). Disquisitiones arithmeticae. Goslar: E.W.G. Kircher pour Gerhard Fleischer à Leipzig, 1801.
In-8 (201 x 118 mm). (Quelques rousseurs.) Demi-veau de l'époque, (quelques usures).
ÉDITION ORIGINALE PUBLIéE PAR L'AUTEUR à L'âGE DE 24 ANS ET QUI RéVOLUTIONNA LA THéORIE DES NOMBRES. "In 1801 the creativity of the previous years was reflected in two extraordinary achievements, the Disquisitiones arithmeticae and the calculation of the orbit of the newly discovered planet Ceres... In his Disquisitiones Gauss summarized previous work in a systematic way, solved some of the most difficult outstanding problems, and formulated concepts and questions that set the pattern of research for a century and still have significance today... The Disquisitiones almost instantly won Gauss recognition by mathematicians as their prince" (DSB). Exemplaire avec les cartons pour les feuillets B7, G4, K3, Ff7, et Tt6. TRèS BON EXEMPLAIRE DANS SA PREMIèRE RELIURE. Dibner 114; Norman 878; PMM 257 ("The Prince of mathematics").
In-8 (201 x 118 mm). (Quelques rousseurs.) Demi-veau de l'époque, (quelques usures).
ÉDITION ORIGINALE PUBLIéE PAR L'AUTEUR à L'âGE DE 24 ANS ET QUI RéVOLUTIONNA LA THéORIE DES NOMBRES. "In 1801 the creativity of the previous years was reflected in two extraordinary achievements, the Disquisitiones arithmeticae and the calculation of the orbit of the newly discovered planet Ceres... In his Disquisitiones Gauss summarized previous work in a systematic way, solved some of the most difficult outstanding problems, and formulated concepts and questions that set the pattern of research for a century and still have significance today... The Disquisitiones almost instantly won Gauss recognition by mathematicians as their prince" (DSB). Exemplaire avec les cartons pour les feuillets B7, G4, K3, Ff7, et Tt6. TRèS BON EXEMPLAIRE DANS SA PREMIèRE RELIURE. Dibner 114; Norman 878; PMM 257 ("The Prince of mathematics").
Further details
First edition of the fundamental book on the modern theory of numbers. With this book, the author, the 24-year old son of a bricklayer, began a new epoch in mathematics. It contains proof of the law of quadratic reciprocity, which had eluded both Euler and Legendre, and a new method of dividing the circle, the first discovery of this kind in Euclidean geometry since Antiquity. The book is extremely difficult to understand, which caused the compositors to make numerous typographical errors in the equations. Gauss insisted therefore on a lengthy errata as well as the cancellation of five leaves, all of which were duly carried out in this copy.