BERNOULLI, Jacob (1654-1703). Ars conjectandi, opus posthumum. Accedit tractatus de seriebus infinitis, et epistola gallicè scripta de Ludo Pilae Reticularis. Edited by Nicolaus Bernoulli (1687-1759). Basel: Thurneisen Brothers, 1713.
BERNOULLI, Jacob (1654-1703). Ars conjectandi, opus posthumum. Accedit tractatus de seriebus infinitis, et epistola gallicè scripta de Ludo Pilae Reticularis. Edited by Nicolaus Bernoulli (1687-1759). Basel: Thurneisen Brothers, 1713.
1 More
No VAT on hammer price or buyer's premium.
BERNOULLI, Jacob (1654-1703). Ars conjectandi, opus posthumum. Accedit tractatus de seriebus infinitis, et epistola gallicè scripta de Ludo Pilae Reticularis. Edited by Nicolaus Bernoulli (1687-1759). Basel: Thurneisen Brothers, 1713.

Details
BERNOULLI, Jacob (1654-1703). Ars conjectandi, opus posthumum. Accedit tractatus de seriebus infinitis, et epistola gallicè scripta de Ludo Pilae Reticularis. Edited by Nicolaus Bernoulli (1687-1759). Basel: Thurneisen Brothers, 1713.

4° (205 x 156mm). With the errata and blank leaf. Woodcut title device, folding sheet with woodcut diagrams, 2 folding letterpress tables, folding plate of woodcut diagrams. (Occasional light marginal soiling, occasional scattered ink spotting.) Modern half morocco, spine lettered directly in gilt, spine sprinkled. Provenance: P. Browne (title signature) — purchased by the Royal Institution on 4 March 1808 from Constable, Edinburgh (lot 5236) for 16s.

FIRST EDITION OF 'THE FIRST SIGNIFICANT BOOK ON PROBABILITY THEORY’ which ‘set forth the fundamental principles of the calculus of probabilities and contained the first suggestion that the theory could extend beyond the boundaries of mathematics to apply to civic, moral and economic affairs' (Norman). Ars Conjectandi deals with the theory of combinations, gives concrete examples on the expectation of profit in games, and considers Probability from a philosophical perspective. The appendix, written in French, explains the various strategies in real tennis, jeu de paume, and the probabilities of winning in different situations. Bernoulli discusses players of uneven strength, games of two versus one, and other permutations of the game. Dibner Heralds of Science 110; Grolier/Horblit 12; Norman 216; PMM 179; Sparrow Milestones p.21.
Special notice
No VAT on hammer price or buyer's premium.

Brought to you by

Julian Wilson
Julian Wilson

More from Science & Medicine Books From The Royal Institution of Great Britain

View All
View All